

Antimicrob Agents Chemother. 1991 Jan;35(1):36-43.

Mechanism of action of anticandidal dipeptides containing inhibitors of glucosamine-6-phosphate synthase.

Milewski S, Andruszkiewicz R, Kasprzak L, Mazerski J, Mignini F, Borowski E.

Department of Pharmaceutical Technology and Biochemistry, Technical University of Gdańsk, Poland.

Abstract

The mechanism of anticandidal action of novel synthetic dipeptides containing N3-(4methoxyfumaroyl)-L-2,3-diaminopropanoic acid (FMDP) residues was shown to be consistent with the "warhead delivery" concept. FMDP dipeptides were shown to be transported into Candida albicans cells by the di-tripeptide permease and subsequently hydrolyzed by intracellular peptidases, especially aminopeptidase. The anticandidal activity of the particular FMDP dipeptide was influenced by the rate of its transport and, to a lower extent, by the intracellular cleavage rate. A high transport rate accompanied by a high cleavage rate resulted in the high anticandidal activity of L-norvalyl-FMDP. The strong growth-inhibitory effect of this compound was the consequence of inhibition of the enzyme glucosamine-6-phosphate synthase by the released FMDP. The action of Lnorvalyl-FMDP on exponentially growing C. albicans cells resulted in a sharp decrease of incorporation of 14C label from [14C]glucose into chitin, mannoprotein, and glucan. This effect, as well as the growth-inhibitory effect, was fully reversed by exogenous Nacetyl-D-glucosamine. Glucosamine-6-phosphate synthase was proved to be the only essential target for FMDP dipeptides. Scanning electron microscopy of C. albicans cells treated with L-norvalyl-FMDP revealed highly distorted, wrinkled, and collapsed forms. Cells formed long, bulbous chains, and partial lysis occurred.

PMID: 1901701 [PubMed - indexed for MEDLINE]PMCID: PMC244938